Search results

1 – 4 of 4
Article
Publication date: 7 August 2019

Meriam Jardioui, Patrizia Garengo and Semma El Alami

Literature highlights the impact of culture on managerial processes in general and the performance measurement system (PMS) in particular. However, understanding how…

2532

Abstract

Purpose

Literature highlights the impact of culture on managerial processes in general and the performance measurement system (PMS) in particular. However, understanding how organizational culture (OC) influences the PMS remains a challenge, especially in SMEs as in these companies the studies are very limited. The purpose of this paper is to investigate how OC influences PMSs in manufacturing SMEs.

Design/methodology/approach

To achieve the above purpose, a case study approach has been adopted. Four manufacturing SMEs with heterogeneous OC were investigated by means of companies’ documents reviews, participant observations and semi-structured interviews. A conceptual framework based on the competing value framework proposed by Cameron and Quinn (1999) and the PMS typology proposed by Garengo (2009) has been used to investigate the impact of OC on PMS.

Findings

According to the results, OC has a huge impact on PMS in manufacturing SMEs. The dimensions of “internal/external focus” influence strategy formalization, monitoring of the external environment and performance review. The “flexibility/control” dimensions influence the adoption of the balanced (or unbalanced) set of performance measures a company uses.

Originality/value

This paper contributes to clarifying how OC influences PMSs in manufacturing SMEs. Moreover, the study of interplay between flexibility/control dimensions and internal/external dimensions supports the identification of three theoretical propositions and four PMS types related to the four different OCs identified by Cameron and Quinn (1999).

Details

International Journal of Productivity and Performance Management, vol. 69 no. 2
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 24 October 2018

Taher Armaghani, A. Kasaeipoor, Mohsen Izadi and Ioan Pop

The purpose of this paper is to numerically study MHD natural convection and entropy generation of Al2O3-water alumina nanofluid inside of T-shaped baffled cavity which is…

Abstract

Purpose

The purpose of this paper is to numerically study MHD natural convection and entropy generation of Al2O3-water alumina nanofluid inside of T-shaped baffled cavity which is subjected to a magnetic field.

Design/methodology/approach

Effect of various geometrical, fluid and flow factors such as aspect ratio of enclosure and baffle length, Rayleigh and Hartmann number of nanofluid have been considered in detail. The hydrodynamics and thermal indexes of nanofluid have been described using streamlines, isotherms and isentropic lines.

Findings

It is found that by enhancing Hartmann number, symmetrical streamlines gradually lose symmetry and their values decline. It is found that by enhancing Hartmann number, symmetrical streamlines gradually lose symmetry and their values decline. The interesting finding is an increase in the impact of Hartmann number on heat transfer indexes with augmenting Rayleigh number. However, with augmenting Rayleigh number and, thus, strengthening the buoyant forces, the efficacy of Hartmann number one, an index indicating the simultaneous impact of natural heat transfer to entropy generation increases. It is clearly seen that the efficacy of nanofluid on increased Nusselt number enhances with increasing aspect ratio of the enclosure. Based on the results, the Nusselt number generally enhances with the larger baffle length in the enclosure. Finally, with larger Hartmann number and lesser Nusselt one, entropy production is reduced.

Originality/value

The authors believe that all the results, both numerical and asymptotic, are original and have not been published elsewhere.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 July 2019

Noureddine Abouricha, Mustapha El Alami and Khalid Souhar

The purpose of this paper is to model the convective flows in a room equipped by a glass door and a heated floor of length l = 0.8 × H and submitted to a sinusoidal temperature…

69

Abstract

Purpose

The purpose of this paper is to model the convective flows in a room equipped by a glass door and a heated floor of length l = 0.8 × H and submitted to a sinusoidal temperature profile and mono alternative temperature profile.

Design/methodology/approach

The paper opts for a numerical study of convective flows in a large scale cavity using the Lattice Boltzmann Method (LBM) by considering a two dimensions (2D) square cavity of side H and filled by air (Pr = 0.71). All the vertical walls, the ceiling and the rest of the floor are thermally insulated, the hot portion of length l = 0.8×H is heated with two imposed temperature profiles of amplitude values 0.2 ≤  a  ≤ 0.6 and for two different periods ζ = ζ0 and ζ = 0.4×ζ0. One of the vertical walls has a cold portion θc = 0 that represents the glass door.

Findings

A systematic study of the flow structure and heat transfer is carried out considering principal control parameters: amplitude “a” and period ζ for Rayleigh number Ra = 108. Effects of these parameters on results are presented in terms of isotherms, streamlines, profiles of velocities, temperature in the cavity, global and local Nusselt number. It has been found that an increase in amplitude or period increases the amplitude of the temperature in the core of cavity. The Nusselt number increases when the amplitude “a” of the imposed temperature increases, but this later is not affected by variation of the period.

Originality/value

The authors used LBM to simulate the convective flows in a cavity at high Ra, heated from below by tow imposed temperature profiles. Indeed, they simulate a local equipped by a solar water heater (SWH). The floor is subjected to a periodic heating: Sinusoidal heating (Case 1) for which the temperature varies sinusoidally (SWH without a supplement), and mono alternation heating (Case 2), the temperature evolves like a redressed signal (SWH with a supplement). The considered method has been successfully validated and compared with the previous work. The study has been conducted using several control parameters such as the signal amplitude and period in the case of turbulent convection. This allowed us to obtain a considerable set of results that can be used for engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 October 2022

Tongsheng Wang, Anna Li, Guang Xi and Zhu Huang

The purpose of this study is to investigate the enhancement and suppression of heat transfer for hybrid nanofluids (Cu–Al2O3/water) in a square enclosure containing a…

Abstract

Purpose

The purpose of this study is to investigate the enhancement and suppression of heat transfer for hybrid nanofluids (Cu–Al2O3/water) in a square enclosure containing a thermal-conductive cylinder when the Lorentz force is applied to the hybrid nanofluids.

Design/methodology/approach

Since the inner conductive cylinder in present research has a complex geometry, an in-house meshless method, namely, the local radial basis function (LRBF) method, is applied to solve the 2 dimensional (2D) incompressible Navier–Stokes equation in the fluid domain and Fourier heat conduction equation in solid domain. The solid–fluid interface remains the physical continuity of temperature and heat flux. Only the Lorentz force is considered for the presence of the magnetic field. The conjugate natural convection is assumed to be steady, thus only fully developed heat exchange from the nanofluids to solid or vice versa is comprehensively investigated.

Findings

It can be concluded that Lorentz force plays a more significant role than hybrid nanofluids in enhancing/suppressing heat transfer when the orientation of magnetic field is the same to the x direction. The thermal conductivity ratio can dramatically change the isotherms and streamlines as well as the mean value of the Nusselt number, resulting in totally different heat transfer phenomena. The included angle of magnetic field also has a significant effect on the heat transfer rate when it changes from horizontal to vertical.

Research limitations/implications

The constant thermo-physical properties of incompressible fluid and the 2D steady flow are considered in this study.

Originality/value

The conjugate MHD natural convection of hybrid nanofluids is numerically investigated by an in-house meshless LRBF method. The enhancement and suppression of heat transfer under the combined influence of the volume fraction of nanoparticles, Hartmann number and the thermal conductivity ratio are comprehensively investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 4 of 4